Abstract

Errors-in-variables regression is the study of the association between covariates and responses where covariates are observed with errors. In this paper, we consider the estimation of multivariate regression functions for dependent data with errors in covariates. Nonparametric deconvolution technique is used to account for errors-in-variables. The asymptotic behavior of regression estimators depends on the smoothness of the error distributions, which are characterized as either ordinarily smooth or super smooth. Asymptotic normality is established for both strongly mixing and ϱ-mixing processes, when the error distribution function is either ordinarily smooth or super smooth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.