Abstract
In this paper, we study multivariate ranks and quantiles, defined using the theory of optimal transport, and build on the work of Chernozhukov et al. (Ann. Statist. 45 (2017) 223–256) and Hallin et al. (Ann. Statist. 49 (2021) 1139–1165). We study the characterization, computation and properties of the multivariate rank and quantile functions and their empirical counterparts. We derive the uniform consistency of these empirical estimates to their population versions, under certain assumptions. In fact, we prove a Glivenko–Cantelli type theorem that shows the asymptotic stability of the empirical rank map in any direction. Under mild structural assumptions, we provide global and local rates of convergence of the empirical quantile and rank maps. We also provide a sub-Gaussian tail bound for the global L2-loss of the empirical quantile function. Further, we propose tuning parameter-free multivariate nonparametric tests—a two-sample test and a test for mutual independence—based on our notion of multivariate quantiles/ranks. Asymptotic consistency of these tests are shown and the rates of convergence of the associated test statistics are derived, both under the null and alternative hypotheses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.