Abstract

Data-driven techniques have recently drawn significant interest in the predictive modeling of subcutaneous (s.c.) glucose concentration in type 1 diabetes. In this study, the s.c. glucose prediction is treated as a multivariate regression problem, which is addressed using support vector regression (SVR). The proposed method is based on variables concerning: (i) the s.c. glucose profile, (ii) the plasma insulin concentration, (iii) the appearance of meal-derived glucose in the systemic circulation, and (iv) the energy expenditure during physical activities. Six cases corresponding to different combinations of the aforementioned variables are used to investigate the influence of the input on the daily glucose prediction. The proposed method is evaluated using a dataset of 27 patients in free-living conditions. 10-fold cross validation is applied to each dataset individually to both optimize and test the SVR model. In the case where all the input variables are considered, the average prediction errors are 5.21, 6.03, 7.14 and 7.62 mg/dl for 15, 30, 60 and 120 min prediction horizons, respectively. The results clearly indicate that the availability of multivariable data and their effective combination can significantly increase the accuracy of both short-term and long-term predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.