Abstract

The solutions of a polynomial system can be computed using eigenvalues and eigenvectors of certain endomorphisms. There are two different approaches, one by using the (right) eigenvectors of the representation matrices, one by using the (right) eigenvectors of their transposed ones, i.e. their left eigenvectors. For both approaches, we describe the common eigenspaces and give an algorithm for computing the solution of the algebraic system. As a byproduct, we present a new method for computing radicals of zero-dimensional ideals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.