Abstract

When we perform a cognitive task, multiple brain regions are engaged. Understanding how these regions interact is a fundamental step to uncover the neural bases of behavior. Most research on the interactions between brain regions has focused on the univariate responses in the regions. However, fine grained patterns of response encode important information, as shown by multivariate pattern analysis. In the present article, we introduce and apply multivariate pattern dependence (MVPD): a technique to study the statistical dependence between brain regions in humans in terms of the multivariate relations between their patterns of responses. MVPD characterizes the responses in each brain region as trajectories in region-specific multidimensional spaces, and models the multivariate relationship between these trajectories. We applied MVPD to the posterior superior temporal sulcus (pSTS) and to the fusiform face area (FFA), using a searchlight approach to reveal interactions between these seed regions and the rest of the brain. Across two different experiments, MVPD identified significant statistical dependence not detected by standard functional connectivity. Additionally, MVPD outperformed univariate connectivity in its ability to explain independent variance in the responses of individual voxels. In the end, MVPD uncovered different connectivity profiles associated with different representational subspaces of FFA: the first principal component of FFA shows differential connectivity with occipital and parietal regions implicated in the processing of low-level properties of faces, while the second and third components show differential connectivity with anterior temporal regions implicated in the processing of invariant representations of face identity.

Highlights

  • Cognitive tasks recruit multiple brain regions [1,2,3,4]

  • We introduce an approach in which each region’s responses are characterized in terms of region-specific dimensions that best account for its responses, and the relationships between regions are modeled with multivariate linear models. We demonstrate that this approach provides a better account of the data as compared to standard functional connectivity in two different experiments, and we use it to discover multiple dimensions within the fusiform face area that have different connectivity profiles with the rest of the brain

  • These studies are important steps towards exploiting the wealth of information encoded in patterns of BOLD response to study connectivity, but they both characterize the information encoded in a brain region using a single measure, rather than in terms of values along multiple dimensions

Read more

Summary

Introduction

Cognitive tasks recruit multiple brain regions [1,2,3,4]. How do these regions work together to generate behavior? A variety of methods have been developed to study connectivity both in terms of the anatomical structure of the brain [5], and of the relations between timecourses of responses during rest [6] and during specific experimental tasks [7,8,9,10,11]. Functional Magnetic Resonance Imaging (fMRI) has proven to be a valuable instrument in this enterprise, offering noninvasive recording with good spatial resolution and whole-brain coverage In parallel to this literature, multivariate pattern analysis (MVPA; [12]) has drastically increased the potential of fMRI for the investigation of representational content, making it possible to detect information at a level of specificity that was unthinkable with previous univariate analyses [13,14,15,16,17]. Earlier work by the same group [19] used a continuous measure of classification based on correlations, offering a richer description of each brain region’s patterns These studies are important steps towards exploiting the wealth of information encoded in patterns of BOLD response to study connectivity, but they both characterize the information encoded in a brain region using a single measure (a given classification), rather than in terms of values along multiple dimensions

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.