Abstract

We study the transient and stationary behavior of many-particle systems in terms of multivariate Ornstein-Uhlenbeck processes with friction and diffusion coefficients that depend nonlinearly on process mean fields. Mean-field approximations of this kind of system are derived in terms of Fokker-Planck equations. In such systems, multiple stationary solutions as well as bifurcations of stationary solutions may occur. In addition, strictly monotonically decreasing steady-state autocorrelation functions that decay faster than exponential functions are found, which are used to describe the erratic motion of the center of pressure during quiet standing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.