Abstract
In this paper we investigate the valuation of investment guarantees in a multivariate (discrete-time) framework. We present how to build multivariate models in general, and we survey the most important multivariate GARCH models. A direct multivariate application of regime-switching models is also discussed, as is the estimation of these models using maximum likelihood and their comparison in a multivariate setting. The computation of the CTE provision is further presented. We have estimated the models with a multivariate dataset (Canada, United States, United Kingdom, and Japan), and we compared the quality of their fit using multiple criteria and tests. We observe that multivariate GARCH models provide a better overall fit than regime-switching models. However, regime-switching models appropriately represent the fat tails of the returns distribution, which is where most GARCH models fail. This leads to significant differences in the value of the CTE provisions, and, in general, provisions computed with regime-switching models are higher. Thus, the results from this multivariate analysis are in line with what was obtained in the literature of univariate models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.