Abstract
We study the limit law of a vector made up of normalized sums of functions of long‐range dependent stationary Gaussian series. Depending on the memory parameter of the Gaussian series and on the Hermite ranks of the functions, the resulting limit law may be (a) a multi‐variate Gaussian process involving dependent Brownian motion marginals, (b) a multi‐variate process involving dependent Hermite processes as marginals or (c) a combination. We treat cases (a) and (b) in general and case (c) when the Hermite components involve ranks 1 and 2. We include a conjecture about case (c) when the Hermite ranks are arbitrary, although the conjecture can be resolved in some special cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.