Abstract
The concrete method of ‘surface spline interpolation’ is closely connected with the classical problem of minimizing a Sobolev seminorm under interpolatory constraints; the intrinsic structure of surface splines is accordingly that of a multivariate extension of natural splines. The proper abstract setting is a Hilbert function space whose reproducing kernel involves no functions more complicated than logarithms and is easily coded. Convenient representation formulas are given, as also a practical multivariate extension of the Peano kernel theorem. Owing to the numerical stability of Cholesky factorization of positive definite symmetric matrices, the whole construction process of a surface spline can be described as a recursive algorithm, the data relative to the various interpolation points being exploited in sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zeitschrift für angewandte Mathematik und Physik ZAMP
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.