Abstract
PurposeThe purpose of this paper is to overcome the shortcomings of existing multivariate grey incidence models that cannot analyze the similarity of behavior matrixes.Design/methodology/approachFirst, the feasibility of using gradient to measure the similarity of continuous functions is analyzed theoretically and intuitively. Then, a grey incidence degree is constructed for multivariable continuous functions. The model employs the gradient to measure the local similarity, as incidence coefficient function, of two functions, and combines local similarity into global similarity, as grey incidence degree by double integral. Third, the gradient incidence degree model for behavior matrix is proposed by discretizing the continuous models. Furthermore, the properties and satisfaction of grey incidence atom of the proposed model are research, respectively. Finally, a financial case is studied to examine the validity of the model.FindingsThe proposed model satisfies properties of invariance under mean value transformation, multiple transformation and linear transformation, which proves it is a model constructed from similarity perspective. Meanwhile, the case study shows that proposed model performs effectively.Practical implicationsThe method proposed in the paper could be used in financial multivariable time series clustering, personalized recommendation in e-commerce, etc., when the behavior matrixes need to be analyzed from trend similarity perspective.Originality/valueIt will promote the accuracy of multivariate grey incidence model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.