Abstract
AbstractThis paper introduces a new modeling and inference framework for multivariate and anisotropic point processes. Building on recent innovations in multivariate spatial statistics, we propose a new family of multivariate anisotropic random fields, and from them a family of anisotropic point processes. We give conditions that make the proposed models valid. We also propose a Palm likelihood‐based inference method for this type of point process, circumventing issues of likelihood tractability. Finally we illustrate the utility of the proposed modeling framework by analyzing spatial ecological observations of plants and trees in the Barro Colorado Island data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.