Abstract

Bivariate rational interpolating functions of the type introduced in [9, 1] are shown to have a natural extension to the case of rational interpolation of vector-valued quantities using the formalism of Graves-Morris [2]. In this paper, the convergence of Stieltjes-type branched vector-valued continued fractions for two-variable functions are constructed by using the Samelson inverse. Based on them, a kind of bivariate vector-valued rational interpolating function is defined on plane grids. Sufficient conditions for existence, characterisation and uniqueness for the interpolating functions are proved. The results in the paper are illustrated with some examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.