Abstract

Fault detection and diagnosis (FDD) in the photovoltaic (PV) array has become a challenge due to the magnitudes of the faults, the presence of maximum power point trackers, non-linear PV characteristics, and the dependence on isolation efficiency. Thus, the aim of this paper is to develop an improved FDD technique of PV systems faults. The common FDD technique generally has two main steps: feature extraction and selection, and fault classification. Multivariate feature extraction and selection is very important for multivariate statistical systems monitoring. It can reduce the dimension of modeling data and improve the monitoring accuracy. Therefore, in the proposed FDD approach, the principal component analysis (PCA) technique is used for extracting and selecting the most relevant multivariate features and the supervised machine learning (SML) classifiers are applied for faults diagnosis. The FDD performance is established via different metrics using data extracted from different operating conditions of the grid-connected photovoltaic (GCPV) system. The obtained results confirm the feasibility and effectiveness of the proposed approaches for fault detection and diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.