Abstract
The US Department of Agriculture (USDA), through its ARMS, collects detailed information from farm operators on debt used in the farm business. Specific loan characteristics such as interest rate, loan term, origination date, type of loan, loan purpose, and type of financing are collected for up to the five largest loans. This information is used to construct portions of the farm sector balance sheet in addition to supporting research on credit use, farm solvency, and debt repayment capacity. Valid estimation and inferences are critical to the generation of this data, however, because of sensitivity, is subject to nonresponse or do not know. Ignoring item nonresponse completely, by setting all missing values to zero or by taking into account only the existing answers will result in a bias. Imputation, the practice of filling in missing data with plausible values, can mitigate this bias. This analysis examines the use of multivariate techniques for debt component imputation. This would be an improvement over the generalized mean imputation approach used in ARMS and for many of the debt components the first attempt at imputation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.