Abstract
This paper describes the multivariate development of a stability-indicating HPLC method for the quantification of glimepiride in pharmaceutical tablets. Full factorial design, Doehlert design, and response-surface methodology were used in conjunction with the desirability function approach. This procedure allowed the adequate separation of glimepiride from all degradant peaks in a short analysis time (about 9 min). This HPLC method uses potassium phosphate buffer (pH 6.5; 27.5 mmol/L)-methanol (34 + 66, v/v) mobile phase at a flow rate of 1.0 mL/min and UV detection at 228 nm. A Waters Symmetry C18 column (250 x 4.6 mm, 5.0 pm) at controlled room temperature (25 degrees C) was used as the stationary phase. The method was validated according to International Conference on Harmonization guidelines and demonstrated linearity from 2 to 40 mg/L glimepiride, selectivity, precision, accuracy, and robustness. The LOD and LOQ were 0.315 and 1.050 mg/L, respectively. The multivariate strategy adopted in this work can be successfully applied in routine laboratories because of its fast optimization without the additional cost of columns or equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.