Abstract

The simplicity of object shape and composition modification make additive manufacturing a great option for customized dosage form production. To achieve this goal, the correlation between structural and functional attributes of the printed objects needs to be analyzed. So far, it has not been deeply investigated in 3D printing-related papers. The aim of our study was to modify the functionalities of printed tablets containing liquid crystal-forming drug itraconazole by introducing polyvinylpyrrolidone-based polymers into the filament-forming matrices composed predominantly of poly(vinyl alcohol). The effect of the molecular reorganization of the drug and improved tablets’ disintegration was analyzed in terms of itraconazole dissolution. Micro-computed tomography was applied to analyze how the design of a printed object (in this case, a degree of an infill) affects its reproducibility during printing. It was also used to analyze the structure of the printed dosage forms. The results indicated that the improved disintegration obtained due to the use of Kollidon®CL-M was more beneficial for the dissolution of itraconazole than the molecular rearrangement and liquid crystal phase transitions. The lower infill density favored faster dissolution of the drug from printed tablets. However, it negatively affected the reproducibility of the 3D printed object.

Highlights

  • Additive manufacturing has huge potential to revolutionize the methods of drug delivery system formation

  • We describe for the first time the liquid crystal phase transitions of itraconazole in 3D printed tablets

  • The diameter of the filaments was kept at a constant level; in the case of the PVA_K/CL

Read more

Summary

Introduction

Additive manufacturing has huge potential to revolutionize the methods of drug delivery system formation. It was proven for mass-scale drug production by Aprecia Pharmaceuticals, which registered the first 3D printed drug, Spritam® , in 2015. The issue of the correlation between the internal structure of printed tablets and their properties, the dissolution characteristics, has been explored by several research teams, there is still deficiency in studies on the actual microstructure and quality of printed objects and the mechanisms driving the release of the drug from printed dosage forms [6,7,8,9]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.