Abstract
Four class-modeling techniques (soft independent modeling of class analogy (SIMCA), unequal dispersed classes (UNEQ), potential functions (PF), and multivariate range modeling (MRM)) were applied to multielement distribution to build chemometric models able to authenticate chili pepper samples grown in Calabria respect to those grown outside of Calabria. The multivariate techniques were applied by considering both all the variables (32 elements, Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Fe, Ga, La, Li, Mg, Mn, Na, Nd, Ni, Pb, Pr, Rb, Sc, Se, Sr, Tl, Tm, V, Y, Yb, Zn) and variables selected by means of stepwise linear discriminant analysis (S-LDA). In the first case, satisfactory and comparable results in terms of CV efficiency are obtained with the use of SIMCA and MRM (82.3 and 83.2% respectively), whereas MRM performs better than SIMCA in terms of forced model efficiency (96.5%). The selection of variables by S-LDA permitted to build models characterized, in general, by a higher efficiency. MRM provided again the best results for CV efficiency (87.7% with an effective balance of sensitivity and specificity) as well as forced model efficiency (96.5%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.