Abstract
This dissertation investigates the application of multivariate Chebyshev polynomials in the algebraic signal processing theory for the development of FFT-like algorithms for discrete cosine transforms on weight lattices of compact Lie groups. After an introduction of the algebraic signal processing theory, a multivariate Gauss-Jacobi procedure for the development of orthogonal transforms is proven. Two theorems on fast algorithms in algebraic signal processing, one based on a decomposition property of certain polynomials and the other based on induced modules, are proven as multivariate generalizations of prior theorems. The definition of multivariate Chebyshev polynomials based on the theory of root systems is recalled. It is shown how to use these polynomials to define discrete cosine transforms on weight lattices of compact Lie groups. Furthermore it is shown how to develop FFT-like algorithms for these transforms. Then the theory of matrix-valued, multivariate Chebyshev polynomials is developed based on prior ideas. Under an existence assumption a formula for generating functions of these matrix-valued Chebyshev polynomials is deduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.