Abstract

It is shown that a necessary and sufficient condition for an Archimedean copula generator to generate a d-dimensional copula is that the generator is a d-monotone function. The class of d-dimensional Archimedean copulas is shown to coincide with the class of survival copulas of d-dimensional l 1 ; -norm symmetric distributions that place no point mass at the origin. The d-monotone Archimedean copula generators may be characterized using a little-known integral transform of Williamson [Duke Math. J. 23 (1956) 189-207] in an analogous manner to the well-known Bernstein-Widder characterization of completely monotone generators in terms of the Laplace transform. These insights allow the construction of new Archimedean copula families and provide a general solution to the problem of sampling multivariate Archimedean copulas. They also yield useful expressions for the d-dimensional Kendall function and Kendall's rank correlation coefficients and facilitate the derivation of results on the existence of densities and the description of singular components for Archimedean copulas. The existence of a sharp lower bound for Archimedean copulas with respect to the positive lower orthant dependence ordering is shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.