Abstract

Quantitative analysis with laser-induced breakdown spectroscopy traditionally employs calibration curves that are complicated by chemical matrix effects. These chemical matrix effects influence the laser-induced breakdown spectroscopy plasma and the ratio of elemental composition to elemental emission line intensity. Consequently, laser-induced breakdown spectroscopy calibration typically requires a priori knowledge of the unknown, in order for a series of calibration standards similar to the unknown to be employed. In this paper, three new Multivariate Analysis techniques are employed to analyze the laser-induced breakdown spectroscopy spectra of 18 disparate igneous and highly-metamorphosed rock samples. Partial Least Squares analysis is used to generate a calibration model from which unknown samples can be analyzed. Principal Components Analysis and Soft Independent Modeling of Class Analogy are employed to generate a model and predict the rock type of the samples. These Multivariate Analysis techniques appear to exploit the matrix effects associated with the chemistries of these 18 samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call