Abstract

Agricultural expansion has eliminated a high proportion of native land cover and severely degraded remaining native vegetation. Managers must determine where degradation is severe enough to merit restoration action, and what action, if any, is necessary. We report on grassland degraded by multiple factors, including grazing, soil disturbance, and exotic plant species introduced in response to agriculture management. We use a multivariate method to categorize plant communities by degradation state based on floristic and biophysical degradation associated with historical land use. The variables we associate with degradation include abundance of the invasive cool-season grass, tall fescue (Schedonorus phoenix (Scop.) Holub); soil organic carbon (SOC); and heavy livestock grazing. Using a series of multivariate analyses (ordination, hierarchical clustering, and multiple regression), we identify patterns in plant community composition and describe floristic degradation states. We found vegetation states to be described largely by vegetation composition associated primarily with tall fescue and secondarily by severe grazing, but not soil organic carbon. Categorizing grasslands by vegetation states helps managers efficiently apply restoration inputs that optimize ecosystem response, so we discuss potential restoration pathways in a state-and-transition model. Reducing stocking rate on grassland where grazing is actively practiced is an important first step that might be sufficient for restoring grassland with high native species richness and minimal degradation from invasive plants. More severe degradation likely requires multiple approaches to reverse degradation. Of these, we recommend restoration of ecological processes and disturbance regimes such as fire and grazing. We suggest old-field grasslands in North America, which are similar to European semi-natural grassland in composition and function, deserve more attention by conservation biologists.

Highlights

  • Anthropogenic impacts have been documented across more than three-quarters of the Earth’s ice-free terrestrial surface [1,2], and the global intensification of land use threatens biodiversity in human-impacted areas [3,4]

  • We identified the degradation factors and plant community variables that were associated with differences among vegetation states

  • Patterns of plant species richness and abundance clearly segment into three degradation states (Figure 4), which correspond with patterns of two primary degradation factors in these grasslands—tall fescue abundance and a history of severe grazing (Figure 1)

Read more

Summary

Introduction

Anthropogenic impacts have been documented across more than three-quarters of the Earth’s ice-free terrestrial surface [1,2], and the global intensification of land use threatens biodiversity in human-impacted areas [3,4]. Multifunctional landscapes comprised of natural and semi-natural ecosystems set in the context of intensive land use can address multiple goals of production and conservation [5,6,7], but severe degradation can overcome ecosystem resilience and reduce ecosystem stability and function through catastrophic state shifts [8]. Conservation of native biodiversity and restoration of ecosystem function often requires some degree of ecosystem restoration to a less-degraded state. Managers must often determine the causes of ecological degradation before proceeding with restoration. Restoring native grassland from cropland agriculture typically involves managing for maximal native species diversity and minimal non-native species by planting a diverse mix of native species and removing exotic species [10,11]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.