Abstract

Airborne hyperspectral remote sensing was adapted to establish a general-purpose model for quantifying nitrogen content of rice plants at the heading stage using three years of data. There was a difference in dry mass and nitrogen concentration due to the difference in the accumulated daily radiation (ADR) and effective cumulative temperature (ECT). Because of these environmental differences, there was also a significant difference in nitrogen content among the three years. In the multiple linear regression (MLR) analysis, the accuracy (coefficient of determination: R 2, root mean square of error: RMSE and relative error: RE) of two-year models was better than that of single-year models as shown by R 2 ≥ 0.693, RMSE ≤ 1.405 g m −2 and RE ≤ 9.136%. The accuracy of the three-year model was R 2 = 0.893, RMSE = 1.092 g m −2 and RE = 8.550% with eight variables. When each model was verified using the other data, the range of RE for two-year models was similar or increased compared with that for single-year models. In the partial least square regression (PLSR) model for the validation, the accuracy of two-year models was also better than that of single-year models as R 2 ≥ 0.699, RMSE ≤ 1.611 g m −2 and RE ≤ 13.36%. The accuracy of the three-year model was R 2 = 0.837, RMSE = 1.401 g m −2 and RE = 11.23% with four latent variables. When each model was verified, the range of RE for two-year models was similar or decreased compared with that for single-year models. The similarities and differences of loading weights for each latent variable depending on hyperspectral reflectance might have affected the regression coefficients and the accuracy of each prediction model. The accuracy of the single-year MLR models was better than that of the single-year PLSR models. However, accuracy of the multi-year PLSR models was better than that of the multi-year MLR models. Therefore, PLSR model might be more suitable than MLR model to predict the nitrogen contents at the heading stage using the hyperspectral reflectance because PLSR models have more sensitive than MLR models for the inhomogeneous results. Although there were differences in the environmental variables (ADR and ECT), it is possible to establish a general-purpose prediction model for nitrogen content at the heading stage using airborne hyperspectral remote sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.