Abstract
The advent of nanopore-based sensors based on resistive pulse sensing gave rise to a remarkable breakthrough in the detection and characterization of nanoscale species. Some strong correlations have been reported between the resistive pulse characteristics and the particle's geometrical and physical properties. These correlations are commonly used to obtain information about the particles in commercial devices and research setups. The correlations, however, do not consider the simultaneous effect of influential factors such as particle shape and off-axis translocation, which complicates the extraction of accurate information from the resistive pulses. In this paper, we numerically studied the impact of the shape and position of particles on pulse characteristics in order to estimate the errors that arise from neglecting the influence of multiple factors on resistive pulses. We considered the sphere, oblate, and prolate particles to investigate the nanoparticle shape effect. Moreover, the trajectory dependency was examined by considering the translocation of nanoparticles away from the nanopore axis. Meanwhile, the shape effect was studied for different trajectories. We observed that the simultaneous effects of influential parameters could lead to significant errors in estimating particle properties if the coupled effects are neglected. Based on the results, we introduce the "pulse waveshape" as a novel characteristic of the resistive pulse that can be utilized as a decoupling parameter in the analysis of resistive pulses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.