Abstract

In consumer research, Just-About-Right (JAR) scales are commonly used to identify sensory attributes perceived to be at their optimal level or, on the contrary, at too high or too low level. For most of the published works, JAR data are combined with overall liking scores to identify a top list of sensory attributes that might be considered for product reformulation, optimization or characterization. The penalty analysis is a popular and relevant way to get these information but each attribute is considered independently. However, considering all the attributes may provide a complementary point of view and component-based multivariate analyses (e.g Principal Component Analysis or Multiple Correspondence Analysis) could be applied to investigate the relationships between attributes. The analysis of JAR scales with multivariate methods has not been addressed much in the sensory community. JAR scales being bipolar, they will be considered as nominal and Principal Component Analysis with Optimal Scaling (PCAOS) is investigated. This method performs a component-based multivariate analysis with an optimal quantification of JAR data. This method is applied to a JAR sensory experiment on French cheeses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.