Abstract
BackgroundAdvanced colorectal neoplasms (ACNs), including colorectal cancers (CRC) and high-risk adenomas (HRA), are detected in less than 20% of persons aged 50 years or older who undergo colonoscopy. We sought to derive personalized predictive models of risk of harbouring ACNs to improve colonoscopy wait times for high-risk patients and allocation of colonoscopy resources.MethodsWe characterized colonoscopy indications, neoplasia risk factors and colonoscopy findings through chart review for consecutive individuals aged 50 years or older who underwent outpatient colonoscopy at The Ottawa Hospital (Ottawa, Canada) between April 1, 2008 and March 31, 2012 for non-life threatening indications. We linked patients to population-level health administrative datasets to ascertain additional historical predictor variables and derive multivariable logistic regression models for risk of harboring ACNs at colonoscopy. We assessed model discriminatory capacity and calibration and the ability of the models to improve colonoscopy specificity while maintaining excellent sensitivity for ACN capture.ResultsWe modelled 17 candidate predictors in 11,724 individuals who met eligibility criteria. The final CRC model comprised 8 variables and had a c-statistic value of 0.957 and a goodness-of-fit p-value of 0.527. Application of the models to our cohort permitted 100% sensitivity for identifying persons with CRC and > 90% sensitivity for identifying persons with HRA, while improving colonoscopy specificity for ACNs by 23.8%.ConclusionsOur multivariable models show excellent discriminatory capacity for persons with ACNs and could significantly increase colonoscopy specificity without overly sacrificing sensitivity. If validated, these models could allow more efficient allocation of colonoscopy resources, potentially reducing wait times for those at higher risk while deferring unnecessary colonoscopies in low-risk individuals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.