Abstract

Nonlinear optical loop mirrors (NOLMs) are used in modern fiber optic devices and optical communications. In this study, we present numerical analyses of the multiple variables involved in the operation of an NOLM in low- and high-power transmissions. The Jones matrix formalism was used to model linear and circular polarization inputs. We used three-dimensional (3D) plots to identify the characteristics required in the experimental operation of the NOLM. These characteristics, including the critical power, low- and high-power transmission, and dynamic range, depend on parameters such as the fiber loop length, input power, angle of retarder plate, and input polarization. A standard single-mode fiber (SMF-28) with high twist loop lengths of 100, 300, and 500 m and input powers of 0–100 W was simulated. Three-dimensional surface graphics provided a comprehensive view of the NOLM transmission and considerably enhanced the optimal transmission by manipulating adjustable device components including the power and polarization control plates. Optimal transmission facilitates its use in integrating ultrafast pulse generation, optical signal processing, optical communication systems, and photonic integrated circuit applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.