Abstract
Considering that folded phenomena are rather universal in nature and some arbitrary functions can be included in the exact excitations of many (2+1)-dimensional soliton systems, we use adequate multivalued functions to construct folded solitary structures in multi-dimensions. Based on some interesting variable separation results in the literature, a common formula with arbitrary functions has been derived for suitable physical quantities of some significant (2+1)-dimensional soliton systems like the generalized Ablowitz?Kaup?Newell?Segur (GAKNS) model, the generalized Nizhnik?Novikov?Veselov (GNNV) system and the new (2+1)-dimensional long dispersive wave (NLDW) system. Then a new special type of two-dimensional solitary wave structure, i.e. the folded solitary wave and foldon, is obtained. The novel structure exhibits interesting features not found in the single valued solitary excitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.