Abstract
In this paper we discuss an important integrity constraint called multivalued dependency (mvd), which occurs as a result of the first normal form, in the framework of a newly proposed model called fuzzy multivalued relational data model. The fuzzy multivalued relational data model proposed in this paper accommodates a wider class of ambiguities by representing the domain of attributes as a “set of fuzzy subsets”. We show that our model is able to represent multiple types of impreciseness occurring in the real world. To compute the equality of two fuzzy sets/values (which occur as tuple-values), we use the concept of fuzzy functions. So the main objective of this paper is to extend the mvds in context of fuzzy multivalued relational model so that a wider class of impreciseness can be captured. Since the mvds may not exist in isolation, a complete axiomatization for a set of fuzzy functional dependencies (ffds) and mvds in fuzzy multivalued relational schema is provided and the role of fmvds in obtaining the lossless join decomposition is discussed. We also provide a set of sound Inference Rules for the fmvds and derive the conditions for these Inference Rules to be complete. We also derive the conditions for obtaining the lossless join decomposition of a fuzzy multivalued relational schema in the presence of the fmvds. Finally we extend the ABU's Algorithm to find the lossless join decomposition in context of fuzzy multivalued relational databases. We apply all of the concepts of fmvds developed by us to a real world application of “Technical Institute” and demonstrate that how the concepts fit well to capture the multiple types of impreciseness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.