Abstract

Modern computer networks (CN), having a complex and often heterogeneous structure, generate large volumes of multi-dimensional multi-label data. Accounting for information about multi-label experimental data (ED) can improve the efficiency of solving a number of information security problems: from CN profiling to detecting and preventing computer attacks on CN. The aim of the work is to develop a multi-label artificial neural network (ANN) architecture for detecting and classifying computer attacks in multi-label ED, and its comparative analysis with known analogues in terms of binary metrics for assessing the quality of classification. A formalization of ANN in terms of matrix algebra is proposed, which allows taking into account the case of multi-label classification and the new architecture of ANN with multiple output using the proposed formalization. The advantage of the proposed formalization is the conciseness of a number of entries associated with the ANN operating mode and learning mode. Proposed architecture allows solving the problems of detecting and classifying multi-label computer attacks, on average, 5% more efficiently than known analogues. The observed gain is due to taking into account multi-label patterns between class labels at the training stage through the use of a common first layer. The advantages of the proposed ANN architecture are scalability to any number of class labels and fast convergence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call