Abstract
Viral entry into susceptible host cells typically results from multivalent interactions between viral surface proteins and host entry receptors. In the case of Sin Nombre virus (SNV), a New World hantavirus that causes hantavirus cardiopulmonary syndrome, infection involves the interaction between viral membrane surface glycoproteins and the human integrin alpha(v)beta(3). Currently, there are no therapeutic agents available which specifically target SNV. To address this problem, we used phage display selection of cyclic nonapeptides to identify peptides that bound SNV and specifically prevented SNV infection in vitro. We synthesized cyclic nonapeptides based on peptide sequences of phage demonstrating the strongest inhibition of infection, and in all cases, the isolated peptides were less effective at blocking infection (9.0% to 27.6% inhibition) than were the same peptides presented by phage (74.0% to 82.6% inhibition). Since peptides presented by the phage were pentavalent, we determined whether the identified peptides would show greater inhibition if presented in a multivalent format. We used carboxyl linkages to conjugate selected cyclic peptides to multivalent nanoparticles and tested infection inhibition. Two of the peptides, CLVRNLAWC and CQATTARNC, showed inhibition that was improved over that of the free format when presented on nanoparticles at a 4:1 nanoparticle-to-virus ratio (9.0% to 32.5% and 27.6% to 37.6%, respectively), with CQATTARNC inhibition surpassing 50% when nanoparticles were used at a 20:1 ratio versus virus. These data illustrate that multivalent inhibitors may disrupt polyvalent protein-protein interactions, such as those utilized for viral infection of host cells, and may represent a useful therapeutic approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.