Abstract

We report the synthesis of pseudo triazole-sialoside protein conjugates of various valency that are resistant to neuraminidase for the adsorption of influenza viruses. The glycotriazole monomer bearing an amine-functionalized linker was synthesized by click chemistry and grafted to the lysine residues of bovine serum albumin (BSA) or human serum albumin (HSA) via diethyl squarate and adipate-based strategy. The binding of hemagglutinin (HA) and neuraminidase (NA) on the virion surface by the synthetic neoglycoproteins were evaluated by hemagglutination and neuraminidase inhibition assay, respectively. The results demonstrated that these synthetic glycoproteins have significantly higher affinity with NA than HA. The interactions between these neoglycoproteins and intact influenza viruses were further investigated by Dynamic Light Scattering (DLS) technique. The pronounced agglutination indicated that these glycoconjugates can be used as adsorbents to prevent virus from invading host cells as well as the release of newly synthesized viral particles, which are crucial in the life cycle of the influenza virus. With the high binding affinity to intact influenza viruses, these neoglycoproteins can also be used as probe to elucidate the molecular mechanism of the sialic acid-influenza recognition and biosensors for influenza detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.