Abstract

We show, in this paper that multivalent ferrocyanide anions can penetrate into exponentially growing (PGA/PAH)n multilayer films whatever the nature of the last deposited layer. These ions are not able to diffuse out of the film when it is brought in contact with a pure buffer solution. However, the contact of this film with a poly(allylamine) (PAH) or a poly(L-glutamic acid) (PGA) solution leads to the release of ferrocyanide ions from the multilayer. It is shown that the release of ferrocyanide anions, when the film is in contact with a PGA solution, is due to the diffusion of the PGA chains into the film so that an exchange between ferrocyanide ions and PGA chains takes place inside the film. On the other hand, PAH chains do not diffuse into PGA/PAH multilayers. When the film is then brought in contact with a PAH solution, the PAH chains from the solution are expected to strongly interact with the ferrocyanide ions and thus induce a diffusion mechanism of the multivalent anions out of the film, the film/solution interface playing the role of a sink for these ions. This work thus shows that interactions between multivalent ions and exponentially growing films are much more complex than expected at first sight and that polyelectrolyte multilayers must be seen as dynamic entities in which diffusion and exchange processes can take place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.