Abstract

Oxides undergoing reversible electrochemical cycling of Mg2+ ions would enable novel battery concepts beyond Li+, capable of storing large amounts of energy. However, materials showing this chemical reactivity are scarce. Suitable candidates require small particles to shorten transport lengths, together with chemically complex structures that promote cation mobility, such as spinel. These goals pose a challenge for materials chemists. Here, nanocrystals of spinel-type Mg0.5Mn2.5O4 were prepared using colloidal synthesis, and their electrochemical activity is presented. Cycling in an aqueous Mg2+ electrolyte led to a reversible transformation between a reduced spinel and an oxidized layered framework. This reaction involves large amounts of capacity because of the full oxidation to Mn4+, through the extraction of both Mg2+ and, in the first cycle, Mn2+ ions. Re-formation of the spinel upon reduction resulted in enrichment with Mg2+, indicating that its insertion is more favorable than that of Mn2+. Incorpo...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call