Abstract
The site-specific expression of molecular markers on endothelial cells of blood vessels during inflammatory response and angiogenesis provides an opportunity to target drugs and imaging molecules to the vascular endothelium of diseased tissues. This paper describes an innovative strategy for selective delivery of polymer conjugates to E- and P-selectin expressing cells using a series of quinic acid (Qa) based non-carbohydrate analogues of the natural ligand sialyl Lewis(x) (sLe(x)) as targeting moieties. We demonstrate that such analogues antagonize the adhesion of sLe(x) expressing HL-60 cells to both E- and P-selectin. Significantly, the apparent avidity of polymer conjugates carrying multiple Qa copies has increased by 3 orders of magnitude relative to their monomeric forms. Furthermore, we found that the major mechanism of copolymer entry and delivery into E-selectin expressing cells is endocytosis. These selectin-targetable copolymers provide the foundation to support controlled delivery of anticancer drugs and imaging agents to tumor vasculature for therapeutic and diagnostic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.