Abstract

Dendrimers are macromolecules with well-defined, homogeneous, and monodispersed structures that form a branch-like structure. In general, they have a symmetric core, inner shells, and an outer shell. Over the past decade, metallodendritic architectures have developed into a new area in nanomedicine. Due to their versatility and facile customization, phosphorus dendrimers represent interesting platforms for biomedical applications. Metallo-conjugated phosphorus dendrimers have been developed within the dendrimer space, an important part of the chemical space. The first investigation was made using phosphorus dendrimers bearing copper(II) groups on their surface as the original anticancer drug candidates. The aim of this minireview is to present our powerful strategy to find and develop original multivalent copper(II)-conjugated phosphorus dendrimers. The most potent of them is G3 dendrimers with N-(pyridine-2-ylmethylene)ethanamine as the chelating motif complexed with Cu(II) (1G3-Cu), showing very good in vitro and in vivo antiproliferative efficacy. On the basis of these results, 1G3-Cu is a potential clinical candidate having progressed from hit to preclinical candidate status.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.