Abstract

The transmitter optimization (i.e., steering vectors and power allocation) for a MISO Broadcast Channel (MISO-BC) subject to general linear constraints is considered. Such constraints include, as special cases, the sum power, the per-antenna or per-group-of-antennas power, and "forbidden interference direction" constraints. We consider both the optimal dirty-paper coding and the simple suboptimal linear zero-forcing beamforming strategies, and provide numerically efficient algorithms that solve the problem in its most general form. As an application, we consider a multi-cell scenario with partial cell cooperation, where each cell optimizes its precoder by taking into account interference constraints on specific users in adjacent cells. The effectiveness of the proposed methods is evaluated in a simple system scenario including two adjacent cells, under different fairness criteria that emphasize the bottleneck role of users near the cell "boundary". Our results show that "active" Inter-Cell Interference (ICI) mitigation outperforms the conventional "static" ICI mitigation based on fractional frequency reuse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.