Abstract
Light-emitting diode (LED)-based visible light communication (VLC), combining illumination and communication, is a promising technique for providing high-speed, low-cost indoor wireless services. In indoor environments, multiple LEDs routinely used as lighting sources may also be concomitantly invoked to support wireless services for multiple users, thus forming a multiuser multiple-input-single-output (MU-MISO) system. Since the user terminals detect all the light rays impinging from multiple LEDs, inter-user interference may severely degrade the attainable system performance. Hence, we conceive a transceiver design for indoor VLC MU-MISO systems to suppress the multiuser interference (MUI). In contrast to classic radio-frequency (RF) communication, in VLC, the signals transmitted from the LEDs are restricted by optical constraints, such as the real-valued nonnegativity of the optical signal, the maximum permissible optical intensity, and the constant brightness requirements of the LEDs. Given these practical constraints, we design the optimal transceiver relying on the objective function of minimizing the maximum mean square error (MMSE) between the legitimate transmitted and received signals of the users and show that it can be readily found by solving a convex second-order cone program. Then, we also propose a simplified transceiver design by incorporating zero-forcing (ZF) transmit precoding (TPC) and show that the TPC coefficients can be efficiently found by solving a linear program. The performance of both the optimal and the simplified transceiver is characterized by comprehensive numerical results under diverse practical VLC system setups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.