Abstract

Due to strong survivability and flexible scheduling, multi-UAV (Unmanned Aerial Vehicle)-assisted communication networks have been widely used in civil and military fields. However, the open accessibility of wireless channels brings a huge risk of privacy disclosure to UAV-based networks. This paper considers a multi-UAV-assisted covert communication system based on Wireless Powered Communication (WPC) and Clustered-Non-Orthogonal-Multiple-Access (C-NOMA), aiming to hide the transmission behavior between UAVs and legitimate ground users (LGUs). Specifically, the UAVs serve as aerial base stations to provide services to LGUs, while avoiding detection by the ground warden. In order to improve the considered covert communication performance, the average uplink covert rate of all clusters in each slot is maximized by jointly optimizing the cluster scheduling variable, subslot allocation, LGU transmit power and multi-UAV trajectory subject to covertness constraints. The original problem is a mixed integer non-convex problem, which are typically difficult to solve directly. To solve this challenge, this paper decouples it into four sub-problems and solves the sub-problems by alternating iterations until the objective function converges. The simulation results show that the proposed multi-UAV-assisted covert communication scheme can effectively improve the average uplink covert rate of all clusters compared with the benchmark schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call