Abstract

Performance of any Structural Health Monitoring (SHM) system strongly depends on a set of sensors which are distributed over the structure under investigation. Optimal deployment of sensors on large scale structures such as tied-arch bridges is quite a challenging problem. Moreover, deployment of a sensor network consisting of different types of sensors (accelerometers, inclinometers or strain gauges) over a large scale bridge renders the task of optimization even more demanding. In the present study, a conventional sensor placement method for distribution of a homogenous sensor network is expanded to the heterogeneous case. First, the basic equations governing the estimation error will be recalled. Then, the Fisher information matrix is assembled using normalized translational and rotational mode shapes. Finally, a computational procedure is proposed which allows optimal sensor positions to be selected among thousands candidate locations. The effectiveness of the proposed strategy is demonstrated using a realistic example of a tied-arch bridge located in Poland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.