Abstract

AbstractThe field population dynamics of pea aphid (Acyrthosiphon pisum) and blue alfalfa aphid (A. kondoi) in alfalfa (Medicago sativa), as influenced by weather, competitors (Egyptian alfalfa weevil = EAW, Hypera brunneipennis), predation from coccinellids (Hippodamia convergens) and harvesting practices, are examined with a stochastic multitrophic level simulation model. The model incorporates a demand-driven functional-response model to estimate prey consumption, and a metabolic pool model to determine the rates and priorities of food allocation to respiration, growth, reproduction, and egestion.The model results compare favorably with field data, and are used to examine the effects of removal of each of the above factors on the dynamics of the aphids. The model shows that the observed density of EAW did not affect the aphid dynamics, but did reduce the standing crop of alfalfa. The predator H. convergens had a significant effect on the population dynamics of the aphids and the plant. Harvesting greatly affected the aphid population dynamics, as well as the dynamics of plant growth and reserve accumulation. However, high temperatures mediated through species-specific respiration costs and possibly a fungal pathogen were responsible for the observed dominance of blue aphid populations in the cool parts of the year and pea aphid populations during warmer parts of the year.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call