Abstract

Relevance feedback (RF) schemes based on support vector machines (SVMs) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based RF approaches is often poor when the number of labeled feedback samples is small. This is mainly due to 1) the SVM classifier being unstable for small-size training sets because its optimal hyper plane is too sensitive to the training examples; and 2) the kernel method being ineffective because the feature dimension is much greater than the size of the training samples. In this paper, we develop a new machine learning technique, multitraining SVM (MTSVM), which combines the merits of the cotraining technique and a random sampling method in the feature space. Based on the proposed MTSVM algorithm, the above two problems can be mitigated. Experiments are carried out on a large image set of some 20,000 images, and the preliminary results demonstrate that the developed method consistently improves the performance over conventional SVM-based RFs in terms of precision and standard deviation, which are used to evaluate the effectiveness and robustness of a RF algorithm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.