Abstract

Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

Highlights

  • The mammalian brain exhibits remarkable processing power

  • While it is well established that glucose feeds the brain, few of the details regarding the destiny of glucose intermediates in metabolic pathways are known

  • While experimental data support the occurrence of a flow of lactate from glia to neurons, the astrocyte-neuron lactate shuttle (ANLS), some theoretical considerations have been proposed to support the occurrence of lactate transport in the other direction (NALS)

Read more

Summary

Introduction

The mammalian brain exhibits remarkable processing power. It is at the same time energy efficient. The design features that allow such efficient computation are mapped in cellular and molecular components and their roles in information processing. These features are anchored in, and constrained by, the universal metabolic chains that provide energy to cells. Deciphering the metabolic code and the neural code are tandem requirements for a comprehensive understanding of brain function. Understanding the metabolic underpinnings of information processing is of added value to understanding the etiology and progression of neuropsychiatric and neurodegenerative disorders [1, 2]. The picture that emerges from this dynamical system will reflect the cooperative function of neurons, glia and the vascular system

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.