Abstract

A number of physically intuitive results for the calculation of multi-time correlations in phase-space representations of quantum mechanics are obtained. They relate time-dependent stochastic samples to multi-time observables, and rely on the presence of derivative-free operator identities. In particular, expressions for time-ordered normal-ordered observables in the positive-P distribution are derived which replace Heisenberg operators with the bare time-dependent stochastic variables, confirming extension of earlier such results for the Glauber-Sudarshan P. Analogous expressions are found for the anti-normal-ordered case of the doubled phase-space Q representation, along with conversion rules among doubled phase-space s-ordered representations. The latter are then shown to be readily exploited to further calculate anti-normal and mixed-ordered multi-time observables in the positive-P, Wigner, and doubled-Wigner representations. Which mixed-order observables are amenable and which are not is indicated, and explicit tallies are given up to 4th order. Overall, the theory of quantum multi-time observables in phase-space representations is extended, allowing non-perturbative treatment of many cases. The accuracy, usability, and scalability of the results to large systems is demonstrated using stochastic simulations of the unconventional photon blockade system and a related Bose-Hubbard chain. In addition, a robust but simple algorithm for integration of stochastic equations for phase-space samples is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.