Abstract
Various problems viz. population diversity problem, premature convergence problem and curse of dimensionality problem, are associated with Genetic Algorithm (GA). Dual Population GA (DPGA) helps to provide additional population diversity to the main population by means of crossbreeding between the main population and reserve population. This helps to solve the problem of premature convergence and helps in early convergence of the algorithm. The binary encoded Multithreaded Parallel DPGA (MPDPGA) is proposed in this paper to solve the problems of population diversity and premature convergence. The experimental results show that, the performance (mean, standard deviation and standard error of mean), student t-test, mean function evaluation and success rate of MPDPGA is better than serial DPGA (SDPGA) and simple GA (SGA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.