Abstract

This article addresses the generation of strong polyhedral relaxations for nonconvex, quadratically constrained quadratic programs (QCQPs). Using the convex envelope of multilinear functions as our starting point, we develop a polyhedral relaxation for QCQP, along with a cutting plane algorithm for its implementation. Our relaxations are multiterm, i.e. they are derived from the convex envelope of the sum of multiple bilinear terms of quadratic constraints, thereby providing tighter bounds than the standard termwise relaxation of the bilinear functions. Computational results demonstrate the usefulness of the proposed cutting planes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.