Abstract

Video super-resolution (SR) aims to reconstruct the corresponding high-resolution (HR) frames from consecutive low-resolution (LR) frames. It is crucial for video SR to harness both inter-frame temporal correlations and intra-frame spatial correlations among frames. Previous video SR methods based on convolutional neural network (CNN) mostly adopt a single-channel structure and a single memory module, so they are unable to fully exploit inter-frame temporal correlations specific for video. To this end, this paper proposes a multi-temporal ultra-dense memory (MTUDM) network for video super-resolution. Particularly, we embed convolutional long-short-term memory (ConvLSTM) into ultra-dense residual block (UDRB) to construct an ultra-dense memory block (UDMB) for extracting and retaining spatio-temporal correlations. This design also reduces the layer depth by expanding the width, thus avoiding training difficulties, such as gradient exploding and vanishing under a large model. We further adopt multi-temporal information fusion (MTIF) strategy to merge the extracted temporal feature maps in consecutive frames, improving the accuracy without requiring much extra computational cost. The experimental results on extensive public datasets demonstrate that our method outperforms the state-of-the-art methods by a large margin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.