Abstract
The objective of this research is to optimize the Alpha approximation model for soil moisture retrieval using multitemporal SAR data. The Alpha model requires prior knowledge of soil moisture range to constrain soil moisture estimation. The solution of the Alpha model is an undetermined problem due to the fact that the number of observation equations is less than the number of unknown parameters. This research primarily focused on the optimization of Alpha model by employing multisensor and multitemporal SAR data. The disadvantage of the Alpha model can be eliminated by the combination of multisensor SAR data. The optimized Alpha model was evaluated on the basis of a comprehensive campaign for soil moisture retrieval, which acquired multisensor time series SAR data and coincident field measurements. The agreement between the estimated and measured soil moisture was within a root mean square error of 0.08 cm3/cm3 for both methods. The optimized Alpha model shows an obvious improvement for soil moisture retrieval. The results demonstrated that multisensor and multitemporal SAR data are favorable for time series soil moisture retrieval over bare agricultural areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.