Abstract
Remote sensing data for analyzing and evaluating trophic state ecosystem problems seen in Batur Lake isan approach that is suitable for water parameters that cannot be observed terrestrially. As the multitemporal spatial data used in this study were extensive, it was necessary to consider the effectiveness and efficiency of the processing and analysis, therefore R Studio was used as a data processing tool. Theresearch aims to(1) map the trophic state of Batur Lake multitemporally usingPlanetScope Imagery;(2) assess the accuracy of the trophic state model and applyitto anothertemporal data as a SpatialBigData;and (3) understand the trophic state impacton the water quality of Batur Lake based on physical factors andthelake’s chemical concentration (sulfur concentration). Theresearch showsthatthetrophic state of Batur Lake isin good condition,with an ultraoligotrophic state as the majority class,based on the mean Trophic State Index (TSI) value of9.49. The standard errorsof each trophic state parameter were0.010 for total phosphor, 0.609 for chlorophyll-a, and 0.225 for Secchi Disk Transparency (SDT). The multitemporal model demonstratesthat the correlation between the increase oftrophic state and mass fish death cases in Batur Lake is existent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Remote Sensing and Earth Sciences (IJReSES)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.