Abstract
This paper presents a multi-temporal approach for the energy scheduling and voltage/var control problem in a microgrid (MG) system with photovoltaic (PV) generation and energy storage devices (PV-battery MG) during islanded operation conditions. A MG is often defined as a low voltage (LV) distribution grid that encompasses distributed energy resources and loads that operate in a coordinated way, either connected to the upstream distribution grid or autonomously (islanded from the main grid). Considering the islanded operation of the MG during a given period, it is necessary to develop proper tools that allow the effective coordination of the existing resources. Such tools should be incorporated in the MG control system hierarchy in order to assure proper conditions for the operation of the autonomous MG in terms of active power, voltage and reactive power management. Energy storage devices are essential components for the successful operation of islanded MG. These devices have a very fast response and are able to absorb/inject the right amount of power. For the operation of the MG in islanding conditions during a longer period, it is necessary to integrate information related to the forecasting of loads and PV-based generation for the upcoming hours for which is intended to maintain MG in islanded operation. Therefore, this paper presents a tool to be integrated in the Microgrid Central Controller (MGCC) that is responsible to perform a multi-temporal optimal power flow (OPF) in order to schedule the active and reactive power within the MG for the next time intervals.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.