Abstract

ABSTRACT Microwave photonics (MWPs) is an emerging interdisciplinary field, where photonics technologies are adopted to facilitate the generation, transmission, detection, and processing of signals at radio-wave, microwave, and millimeter-wave frequencies. Recently, the integrated photonic technology has demonstrated its capability to miniaturize photonic circuits on a single chip, which paves the way for next-generation integrated MWP signal processing systems having reduced size, weight, and power consumption (SWaP) specifications. In particular, by means of incorporating complementary metal-oxide-semiconductor (CMOS) electronic, optical, and optoelectronic components on a single integrated chip, silicon photonic circuits have brought new architectures and functionalities for MWP signal processing. This accelerates the evolution of MWPs from a single-use microwave signal processor toward a multitasking and cascadable MWP system, which is readily adaptable for a wide variety of uses and applications. In this review article, we provide an overview of the fundamental principle of the MWP signal processing topology. Developments in the microwave filtering technologies are reviewed with a focus on the integrated microwave filtering enhanced by optical phase equalization. We also review the recent progress and give an outlook for the future trend in MWP signal topologies, exploring the realization of multitasking and cascadable microwave signal processing systems based on silicon photonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.